On the rational homotopy type of configuration spaces of points:
On higher algebra (brave new algebra) in stable homotopy theory, i.e. on ring spectra, module spectra etc.:
Rings, modules and algebras in stable homotopy theory, Mathematical Surveys and Monographs Volume 47, AMS 1997 (ISBN:978-0-8218-4303-1, pdf)
On equivariant complex oriented cohomology theory and equivariant formal group laws:
Michael Cole, John Greenlees, Igor Kriz, Equivariant Formal Group Laws, Proceedings of the LMS, Volume81, Issue2 (2000)(doi:10.1112/S0024611500012466)
Michael Cole, John Greenlees, Igor Kriz, The universality of equivariant complex bordism, Math Z 239, 455–475 (2002) (doi:10.1007/s002090100315)
On modular equivariant elliptic cohomology in type II string theory/F-theory:
Igor Kriz, Hisham Sati, M-theory, type IIA superstrings, and elliptic cohomology, Adv. Theor. Math. Phys. 8 (2004), no. 2, 345–394 (euclid:euclid.atmp/1091543172, arXiv:hep-th/0404013)
Igor Kriz, Hisham Sati, Type IIB String Theory, S-Duality, and Generalized Cohomology, Nucl.Phys. B715 (2005) 639-664 (arXiv:hep-th/0410293)
Igor Kriz, Hisham Sati, Type II string theory and modularity, JHEP 0508 (2005) 038 (arXiv:hep-th/0501060)
Discussion of equivariant ordinary cohomology (Bredon cohomology) over the point but in arbitrary RO(G)-degree, for equivariance group a dihedral group of order :
The Adams spectral sequence for Real cobordism cohomology:
More on Real cobordism cohomology:
Po Hu, Igor Kriz, Some Remarks on Real and Algebraic Cobordism, K-Theory 22 (2001) 335–366 [pdf, doi:10.1023/A:1011196901303]
Po Hu, Igor Kriz, Topological Hermitian Cobordism, Journal of Homotopy and Related Structures, 11 (2016) 173–197 [arXiv:1110.5608, doi:10.1007/s40062-014-0100-9]
For the use of category theory in integration, see
Last revised on November 8, 2023 at 19:15:15. See the history of this page for a list of all contributions to it.